Lung cancer is one of the most common cancers in both men and women worldwide. Early diagnosis of lung cancer can significantly increase the chances of a patient's survival, yet early detection has historically been difficult. As a result, there has been a great deal of progress in the development of accurate and fast diagnostic tools in recent years. Lung Cancer and Imaging provides an introduction to both the methods currently used in lung cancer diagnosis and the promising new techniques that are emerging. Areas covered include the major trends and challenges in lung cancer detection and diagnosis, classification of cancer types, lung feature extraction in joint PET/CT images, and algorithms in the area of low dosage CT lung cancer images. Part of Series in Physics and Engineering in Medicine and Biology.
can improve the effectiveness of treatment and increase a patient's chances of survival. Thus, there is an urgent need for new technology to diagnose small, malignant lung nodules early as well as large nodules located away from large diameter airways because the current technology namely, needle biopsy and bronchoscopy fail to diagnose those cases.

However, the analysis of small, indeterminate lung masses is fraught with many technical difficulties. Often patients must be followed for years with serial CT scans in order to establish a diagnosis, but inter-scan variability, slice selection artifacts, differences in degree of inspiration, and scan angles can make comparing serial scans unreliable. Lung Imaging and Computer Aided Diagnosis brings together researchers in pulmonary image analysis to present state-of-the-art image processing techniques for detecting and diagnosing lung cancer at an early stage. The book addresses variables and discrepancies in scans and proposes ways of evaluating small lung masses more consistently to allow for more accurate measurement of growth rates and analysis of shape and appearance of the detected lung nodules.

Contributors also explore the effective use of these methodologies for diagnosis and therapy in clinical applications. Arguably the first book of its kind to address and evaluate image-based diagnostic approaches for the early diagnosis of lung cancer, Lung Imaging and Computer Aided Diagnosis constitutes a valuable resource for biomedical engineers, researchers, and clinicians in lung disease imaging.
This book is a collection of all the experimental results and analysis carried out on various medical imaging modalities. The experimental investigations have been carried out on medical images using State-of-art Computational Image processing techniques and also tabulated the statistical values wherever necessary. This book is intended to explain how the Computer Vision Techniques are used to improve the quality of Medical images for easy analysis in a very simple way. It contains Research which is useful to Research Scholars, Engineers, Medical Doctors and Bioinformatics researchers.

Lung cancer is the leading cause of cancer related deaths worldwide. Several studies have evaluated the relationship between chronic bronchitis and lung cancer. Chronic obstructive pulmonary disease refers to chronic bronchitis and emphysema, a pair of two commonly co-existing diseases of the lungs. The leading cause of both lung cancer and COPD is well recognized in tobacco use. The aim of our study is to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as diagnostic parameter that could help clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. 5cER value confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible markers and to understand if there is a correlation with ploidy status. Preliminary data show that same genes have positive correlation (r > 0.5) and same negative correlation (r < 0.5).
Nowadays, only 10 - 15% of people diagnosed with lung cancer survive more than 5 years after the diagnosis. The main cause is the delay in detecting it. One way of early detecting nodules is to use a system over chest x-rays that can classify them. A project is being carried out in order to develop this system, but this work is a previous and necessary step: it aims to separate anteroposterior and lateral images in order to make the classifier to perform better. To do so, we have studied four deep learning methods: logistic regression, multi-layer perceptron (MLP), restricted Boltzmann machines (RBM) and convolutional networks (CNN).

We applied all four methods to a random sample of our dataset and registered their accuracy, specificity, sensitivity and AUC (area under curve). With these, we observed that MLP is the one with the best performance along with CNN, but the latter requires more runtime. However, if one would like to use the simplest method, logistic regression also performs well enough.
networking technologies, and discusses the state-of-the-art in data engineering practices to tackle massive data distributions in smart networked environments. It also provides insights into potential data distribution challenges in ubiquitous data-driven networks, highlighting research on the theoretical and systematic framework for analyzing, testing and designing intelligent data analysis models for evolving communication frameworks. Further, the book showcases the latest developments in wireless sensor networks, cloud computing, mobile networks, autonomous systems, cryptography, automation, and other communication and networking technologies. In addition, it addresses data security, privacy and trust, wireless networks, data classification, data prediction, performance analysis, data validation and verification models, machine learning, sentiment analysis, and various data analysis techniques.

This book presents high-quality research papers presented at the International Conference on Soft Computing for Intelligent Systems (SCIS 2020), held during 18-20 December 2020 at University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, Haryana, India. The book encompasses all branches of artificial intelligence, computational sciences and machine learning which is based on computation at some level such as AI-based Internet of things, sensor networks, robotics, intelligent diabetic retinopathy, intelligent cancer genes analysis using computer vision, evolutionary algorithms, fuzzy systems, medical automatic identification intelligence system and applications in agriculture, health care, smart grid and instrumentation systems. The book is helpful for educators, researchers and developers working in the area of recent advances and upcoming technologies utilizing...
This comprehensive reference text discusses concepts of intelligence communication and automation systems in a single volume. The text discusses the role of artificial intelligence in communication engineering, the role of machine learning in communication systems, and applications of image and video processing in communication. It covers important topics including smart sensing systems, intelligent hardware design, low power system design using AI techniques, intelligent signal processing for biomedical applications, intelligent robotic systems, and network security applications. The text will be useful for senior undergraduate and graduate students in different areas including electrical engineering, and electronics and communications engineering.

This book discusses how deep learning can help healthcare images or text data in making useful decisions. For that, the need of reliable deep learning models like Neural networks, Convolutional neural network, Backpropagation, Recurrent neural network is increasing in medical image processing, i.e., in Colorization of Black and white images of X-Ray, automatic machine translation, object classification in photographs / images (CT-SCAN), character or useful generation (ECG), image caption generation, etc. Hence, Reliable Deep Learning methods for perception or producing better results are highly effective for e-healthcare applications, which is the challenge of today. For that, this book provides some reliable deep learning or deep neural networks models for healthcare applications via receiving chapters from...
Read PDF Lung Cancer Detection Using Image Processing Techniques

Around the world, in summary, this book will cover introduction, requirement, importance, issues and challenges, etc., faced in available current deep learning models (also include innovative deep learning algorithms/models for curing disease in Medicare) and provide opportunities for several research communities with including several research gaps in deep learning models (for healthcare applications).

This book includes high-quality, peer-reviewed papers from the International Conference on Recent Advancement in Computer, Communication and Computational Sciences (RACCCS-2018), held at Aryabhatta College of Engineering & Research Center, Ajmer, India on August 10 11, 2018, presenting the latest developments and technical solutions in computational sciences. Networking and communication are the backbone of data science, data- and knowledge engineering, which have a wide scope for implementation in engineering sciences. This book offers insights that reflect the advances in these fields from upcoming researchers and leading academicians across the globe. Covering a variety of topics, such as intelligent hardware and software design, advanced communications, intelligent computing technologies, advanced software engineering, the web and informatics, and intelligent image processing, it helps those in the computer industry and academia use the advances in next-generation communication and computational technology to shape real-world applications.

The field of computational intelligence has grown tremendously over the past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently,
Scientists have been able to explain and understand real-life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties, and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational intelligence is now not limited to only specific computational fields; it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers, and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques. Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence. Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, and soft computing techniques.
With increasing emphasis being placed on screening and early prevention in cancer, this textbook examines the various methods and interventions used in screening in lung cancer, and presents a detailed review of the approaches to prevention and treatment of early disease. It will be of particular interest to lung cancer and respiratory medicine specialists.

The main purpose of this project is to investigate the feasibility and efficacy of using a stereo display workstation for lung cancer screening on CT images. The tasks included in this project are development and evaluation of stereo image projection and display for chest CT images, observer performance evaluation for the stereo display, and stereo feature analysis and comparison to the conventionally used display methods for lung cancer detection. During this progress period, we have made progress in the following tasks:

1) Building stereo display workstation for chest CT images: We have investigated effects of several commonly used compositing methods on nodule representation and detection in stereo CT images. Among these methods, conventional maximum intensity projection (MIP) produced the highest image contrast, but gave ambiguities in local geometric detail and texture, whereas averaging compositing resulted in the lowest contrast, but preserved geometric details. Distance-weighted MIP partially recovered geometric information, which was lost in images composited by conventional MIP.

2) Preparing cases for observer performance study: To get consensus truth of the cases collected for this project, three radiologists have read the cases and recorded their subjective ratings on conventional workstation. Inter- and intra-reader variations have been calculated, and will be compared with the readings from stereo display.

3) Conducting pilot observer performance study: Six radiologists have participated a pilot observer performance study.
The study has three display modes, conventional slice-by-slice mode, conventional MIP display mode and stereo display mode. The performance of lung nodule detection and characterization are examined and compared for the three modes.

This two-volume set (CCIS 1229 and CCIS 1230) constitutes the refereed proceedings of the 5th International Conference on Recent Developments in Science, Engineering and Technology, REDSET 2019, held in Gurugram, India, in November 2019. The 74 revised full papers presented were carefully reviewed and selected from total 353 submissions. The papers are organized in topical sections on data centric programming; next generation computing; social and web analytics; security in data science analytics; big data analytics. The 21st century has witnessed massive changes around the world in intelligence systems in order to become smarter, energy efficient, reliable, and cheaper. This volume explores the application of intelligent techniques in various fields of engineering and technology. It addresses diverse topics in such areas as machine learning-based intelligent systems for healthcare, applications of artificial intelligence and the Internet of Things, intelligent data analytics techniques, intelligent network systems and applications, and inequalities and process control systems. The authors explore the full breadth of the field, which encompasses data analysis, image processing, speech processing and recognition, medical science and healthcare monitoring, smart irrigation systems, insurance and banking, robotics and process control, and more.
The book intends to cover various problematic aspects of emerging smart computing and self-adapting technologies comprising of machine learning, artificial intelligence, deep learning, robotics, cloud computing, fog computing, data mining algorithms, including emerging intelligent and smart applications related to these research areas. Further coverage includes implementation of self-adaptation architecture for smart devices, self-adaptive models for smart cities and self-driven cars, decentralized self-adaptive computing at the edge networks, energy-aware AI-based systems, M2M networks, sensors, data analytics, algorithms and tools for engineering self-adaptive systems, and so forth. Acts as guide to Self-healing and Self-adaptation based fully automatic future technologies Discusses about Smart Computational abilities and self-adaptive systems Illustrates tools and techniques for data management and explains the need to apply, and data integration for improving efficiency of big data Exclusive chapter on the future of self-stabilizing and self-adaptive systems of systems Covers fields such as automation, robotics, medical sciences, biomedical and agricultural sciences, healthcare and so forth This book is aimed researchers and graduate students in machine learning, information technology, and artificial intelligence.

This book constitutes the thoroughly refereed proceedings of the second International Symposium on Intelligent Systems Technologies and Applications (ISTA 16), held on September 21-24, 2016 in Jaipur, India. The 80 revised papers presented were carefully reviewed and selected from 210 initial submissions and are organized in topical sections on image processing and artificial vision, computer networks and distributed systems, intelligent tools and techniques and applications using intelligent techniques.
Each day, new applications and methods are developed for utilizing technology in the field of medical sciences, both as diagnostic tools and as methods for patients to access their medical information through their personal gadgets. However, the maximum potential for the application of new technologies within the medical field has not yet been realized. Mobile Devices and Smart Gadgets in Medical Sciences is a pivotal reference source that explores different mobile applications, tools, software, and smart gadgets and their applications within the field of healthcare. Covering a wide range of topics such as artificial intelligence, telemedicine, and oncology, this book is ideally designed for medical practitioners, mobile application developers, technology developers, software experts, computer engineers, programmers, ICT innovators, policymakers, researchers, academicians, and students.

Medical Image processing is one of the prominent detection analysis and goes hand in hand with Cancer detection, diagnosis and treatment. Early detection, diagnosis and treatment are of utmost importance and can improve chances of survival. Filtering, morphology, statistical analysis of the malignant tumours after automatic detection or segmentation of the suspected area of the lungs are some of the basic techniques adapted in any radiological imaging techniques. Lung cancer is the leading cause of cancer-related death in both men and women. This work is concerned with the analysis and classification of bright spots in the tumour. Bright Spots ratio of the tumour is an important ratio, which is nothing but the ratio of number of bright spots and the area of the tumour that is detected. A key problem in finding the number of bright spots is that the images need to be pre-processed.
The main purpose of this project is to investigate the feasibility and efficacy of using a stereo display workstation for lung cancer screening on CT images. The tasks included in this project are development and evaluation of stereo image projection and display for chest CT images, observer performance evaluation for the stereo display, and stereo feature analysis and comparison to the conventionally used display methods for lung cancer detection. In the previous report periods, we have built a stereo display workstation for chest CT images, then conducted and analyzed a pilot observer performance study. In this annual report period, we have conducted a main observer performance study as scheduled in the proposal, and investigated spectrophotometric characteristics for further understanding and improving stereo display. The tasks we did in this period are: 1. Conducting a main study: the main study was organized as a retrospective study of 100 lung cancer screening cases containing about 560 nodules. The cases were interpreted in each of the 3 display modes by 8 radiologists who have...
Read PDF Lung Cancer Detection Using Image Processing Techniques

Extensive experience in reading chest CT. Collection of the interpretation data has been completed for analysis. About 1159 suspicious lesions, including true and false positives have been found in the readings and will be used for evaluation of the 3 tested display modes. 2.

Investigating spectrophotometric characteristics of stereographic image pairs: to further understand the characteristics of stereo imaging and displaying, we analyzed differences in spectrophotometric characteristics between images acquired during stereographic imaging. We found that though uniform global differences can easily be corrected by applying traditional histogram matching techniques, these methods are not capable of dealing with differences that are object or distance dependent.

Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can significantly increase the patient's chance for survival. For this reason, CAD systems for lung cancer have been investigated in a large number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This book overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. Overviews the latest state-of-the-art diagnostic CAD systems for lung cancer imaging and diagnosis Offers detailed coverage of 3D and 4D image segmentation Illustrates unique fully automated detection systems coupled with 4D Computed Tomography (CT) Written by authors who are world-class researchers in the biomedical
Read PDF Lung Cancer Detection Using Image Processing Techniques

Ayman El-Baz is a professor, university scholar, and chair of the Bioengineering Department at the University of Louisville, Louisville, Kentucky. He earned his bachelor's and master's degrees in electrical engineering in 1997 and 2001, respectively. He earned his doctoral degree in electrical engineering from the University of Louisville in 2006. In 2009, he was named a Coulter Fellow for his contributions to the field of biomedical translational research. He has 17 years of hands-on experience in the fields of bio-imaging modeling and noninvasive computer-assisted diagnosis systems. He has authored or coauthored more than 500 technical articles (132 journals, 23 books, 57 book chapters, 211 refereed-conference papers, 137 abstracts, and 27 U.S. patents and disclosures).

Jasjit S. Suri is an innovator, scientist, a visionary, an industrialist, and an internationally known world leader in biomedical engineering. He has spent over 25 years in the field of biomedical engineering/devices and its management. He received his doctorate from the University of Washington, Seattle, and his business management sciences degree from Weatherhead School of Management, Case Western Reserve University, Cleveland, Ohio. He was awarded the President's Gold Medal in 1980 and named a Fellow of the American Institute of Medical and Biological Engineering for his outstanding contributions in 2004. In 2018, he was awarded the Marquis Life Time Achievement Award for his outstanding contributions and dedication to medical imaging and its management.

This book includes high-quality papers presented at the Symposium 2019, organised by Sikkim Manipal Institute of Technology (SMIT), in Sikkim from 26-27 February 2019. It discusses...
Common research problems and challenges in medical image analysis, such as deep learning methods. It also discusses how these theories can be applied to a broad range of application areas, including lung and chest x-ray, breast CAD, microscopy and pathology. The studies included mainly focus on the detection of events from biomedical signals.

Recently Computer Aided Diagnosis (CAD) has become one of the important and major research subjects in medical imaging and diagnostic radiology. The basic concept of CAD is to provide a computer output as a second opinion to assist radiologists' image interpretation by improving accuracy and consistency of radiological diagnosis and also by reducing the image reading time. The goal of CAD is to improve the quality and accuracy of radiological diagnosis. This book gives basic idea of CAD and detailed information about the Region of Interest (ROI) segmentation performed on DICOM lung images to extract the lung nodules from lung portion using various edge detection operators with and without noise. The results are helpful to study and analyze the influence of noise and can be included in the CAD system based on an automatic diagnosis for early detection of lung cancer by extracting the nodules from the lung regions included in chest DICOM images.

"Provides a current review of computer processing algorithms for the identification of lesions, abnormal masses, cancer, and disease in medical images. Presents useful examples from numerous imaging modalities for increased recognition of anomalies in MRI, CT, SPECT and digital/film X-Ray."
Digital images have several benefits, such as faster and inexpensive processing cost, easy storage and communication, immediate quality assessment, multiple copying while preserving quality, swift and economical reproduction, and adaptable manipulation. Digital medical images play a vital role in everyday life. Medical imaging is the process of producing visible images of inner structures of the body for scientific and medical study and treatment as well as a view of the function of interior tissues. This process pursues disorder identification and management. Medical imaging in 2D and 3D includes many techniques and operations such as image gaining, storage, presentation, and communication. The 2D and 3D images can be processed in multiple dimensions. Depending on the requirement of a specific problem, one must identify various features of 2D or 3D images while applying suitable algorithms. These image processing techniques began in the 1960s and were used in such fields as space, clinical purposes, the arts, and television image improvement. In the 1970s, with the development of computer systems, the cost of image processing was reduced and processes became faster. In the 2000s, image processing became quicker, inexpensive, and simpler. In the 2020s, image processing has become a more accurate, more efficient, and self-learning technology.
This book highlights the framework of robust and novel methods for medical image processing techniques in 2D and 3D. The chapters explore existing and emerging image challenges and opportunities in the medical field using various medical image processing techniques. The book discusses real-time applications for artificial intelligence and machine learning in medical image processing. The authors also discuss implementation strategies and future research directions for the design and application requirements of these systems. This book will benefit researchers in the medical image processing field as well as those looking to promote the mutual understanding of researchers within different disciplines that incorporate AI and machine learning.

FEATURES
- Highlights the framework of robust and novel methods for medical image processing techniques
- Discusses implementation strategies and future research directions for the design and application requirements of medical imaging
- Examines real-time application needs
- Explores existing and emerging image challenges and opportunities in the medical field

The book gathers high-quality research papers presented at the International Conference on Advanced Computing and Intelligent Engineering (ICACIE 2017). It includes technical sections describing progress in the fields of advanced computing and intelligent engineering, and is primarily intended for postgraduate students and researchers working in Computer Science and Engineering. However, researchers working in Electronics will also find the book useful, as it addresses hardware technologies and next-gen communication technologies.

The Kuala Lumpur International Conference on Biomedical Engineering (BioMed 2006) was...
Lung Cancer Detection Using Image Processing Techniques

The book covers novel strategies and state-of-the-art approaches for automated non-invasive systems for early prostate cancer diagnosis. Prostate cancer is the most frequently diagnosed malignancy after skin cancer and the second leading cause of cancer-related male deaths in the USA after lung cancer. However, early detection of prostate cancer increases the chances of patient survival. Generally, the CAD systems analyze the prostate images in three steps: (i) prostate segmentation; (ii) prostate description or feature extraction; and (iii) classification of the prostate status. It explores all of the latest research and developments in state-of-the-art imaging of the prostate from world-class experts. It contains a comprehensive overview of 2D/3D Shape Modeling for MRI data. It presents a detailed examination of automated segmentation of the prostate in 3D imaging. It examines Computer-Aided Diagnosis through automated techniques. There will be extensive references at the end of each chapter to enhance further study.

This book provides a comprehensive, conceptual, and detailed overview of the wide range of applications of Artificial Intelligence, Machine Learning, and Data Science and how these...
technologies have an impact on various domains such as healthcare, business, industry, security, and how all countries around the world are feeling this impact. The book aims at low-cost solutions which could be implemented even in developing countries. It highlights the significant impact these technologies have on various industries and on us as humans. It provides a virtual picture of forthcoming better human life shadowed by the new technologies and their applications and discusses the impact Data Science has on business applications. The book will also include an overview of the different AI applications and their correlation between each other. The audience is graduate and postgraduate students, researchers, academicians, institutions, and professionals who are interested in exploring key technologies like Artificial Intelligence, Machine Learning, and Data Science.

This book gathers state-of-the-art research in computational engineering and bioengineering to facilitate knowledge exchange between various scientific communities. Computational engineering (CE) is a relatively new discipline that addresses the development and application of computational models and simulations often coupled with high-performance computing to solve complex physical problems arising in engineering analysis and design in the context of natural phenomena. Bioengineering (BE) is an important aspect of computational biology, which aims to develop and use efficient algorithms, data structures, and visualization and communication tools to model biological systems. Today, engineering approaches are essential for biologists, enabling them to analyse complex physiological processes, as well as for the pharmaceutical industry to support drug discovery and development programmes.
Lung cancer seems to be a common cause of death among people throughout the world. Lung cancer is the leading cancer killer in both men and women in the U.S. In 1987, it surpassed breast cancer to become the leading cause of cancer deaths in women. An estimated 158,080 Americans died from lung cancer in 2016, accounting for approximately 27 percent of all cancer deaths. Early detection of lung cancer can increase the chance of survival among people. The overall 5-year survival rate for lung cancer patients increases from 14 to 49% if the disease is detected in time. Computed Tomography (CT) scans of lungs can be more efficient than X-ray or MRI scans in detecting the presence of cancer. The scanned images of lungs are obtained from LIDC (Lung Image Database Consortium). The scans of twenty patients contain both positive and negative scans, i.e., scans with and without tumor. The first step is to segment the tumor affected region from the lungs, for this we use Marker Controlled Watershed Segmentation from the Image Processing Toolbox. The next step is to extract the features using Feature Extraction methods from Computer Vision toolbox of MATLAB. Different extraction methods like GLCM, SURF, MSER and BRISK are used. The features are extracted from cancer detected images only. The data or the features extracted is in the form of matrix. These features are used to train the classifier, Support Vector Machine (SVM). SVM classifier is a supervised machine learning algorithm used as a tool for data classification with advantages in handling data with high dimensionality and a small sample size. The performance of the SVM is observed for each feature as input. Hence, a lung cancer detection system that employs Image Processing Techniques is used to detect the presence of lung cancer in CT-images. In this study, MATLAB is the software used.
Digital images have several benefits, such as faster and inexpensive processing cost, easy storage and communication, immediate quality assessment, multiple copying while preserving quality, swift and economical reproduction, and adaptable manipulation. Digital medical images play a vital role in everyday life. Medical imaging is the process of producing visible images of inner structures of the body for scientific and medical study and treatment as well as a view of the function of interior tissues. This process pursues disorder identification and management. Medical imaging in 2D and 3D includes many techniques and operations such as image gaining, storage, presentation, and communication. The 2D and 3D images can be processed in multiple dimensions. Depending on the requirement of a specific problem, one must identify various features of 2D or 3D images while applying suitable algorithms. These image processing techniques began in the 1960s and were used in such fields as space, clinical purposes, the arts, and television image improvement. In the 1970s, with the development of computer systems, the cost of image processing was reduced and processes became faster. In the 2000s, image processing became quicker, inexpensive, and simpler. In the 2020s, image processing has become a more accurate, more efficient, and self-learning technology. This book highlights the framework of the robust and novel methods for medical image processing techniques in 2D and 3D. The chapters explore existing and emerging image challenges and opportunities in the medical field using various medical image processing techniques. The book discusses real-time applications for artificial intelligence and machine learning in medical image processing. The authors also discuss implementation strategies and future research directions for the design and application requirements of these systems. This book will benefit researchers in the medical image processing field as well as those looking to...
Read PDF Lung Cancer Detection Using Image Processing Techniques

This book includes high-quality papers presented at the International Conference on Communication, Computing and Electronics Systems 2020, held at the PPG Institute of Technology, Coimbatore, India, on 21-22 October 2020. The book covers topics such as automation, VLSI, embedded systems, integrated device technology, satellite communication, optical communication, RF communication, microwave engineering, artificial intelligence, deep learning, pattern recognition, Internet of Things, precision models, bioinformatics, and healthcare informatics.

Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging.
This issue gives the general radiologist a solid overview of lung cancer imaging techniques. CT screening for lung cancer is discussed, and the evaluation and management of indeterminate pulmonary nodules is reviewed. Revised TNM lung cancer staging, as well as the optimal imaging protocols for lung cancer staging (CT, MR and PET) are thoroughly examined. A multidisciplinary approach to tissue sampling and updated histopathologic classification of lung cancer are discussed. Image-guided ablative therapies for lung cancer are reviewed. Finally, future trends in lung cancer diagnosis and staging and genetics are reviewed, as well as novel biomarkers for lung cancer detection.